Problem T-1

Let \mathbb{Z} denote the set of all integers and $\mathbb{Z}_{>0}$ denote the set of all positive integers.
(a) A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is called \mathbb{Z}-good if it satisfies $f\left(a^{2}+b\right)=f\left(b^{2}+a\right)$ for all $a, b \in \mathbb{Z}$. Determine the largest possible number of distinct values that can occur among $f(1), f(2), \ldots, f(2023)$, where f is a \mathbb{Z}-good function.
(b) A function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ is called $\mathbb{Z}_{>0}$-good if it satisfies $f\left(a^{2}+b\right)=f\left(b^{2}+a\right)$ for all $a, b \in \mathbb{Z}_{>0}$. Determine the largest possible number of distinct values that can occur among $f(1), f(2), \ldots, f(2023)$, where f is a $\mathbb{Z}_{>0}$-good function.

Problem T-2

Let a, b, c and d be positive real numbers with $a b c d=1$. Prove that

$$
\frac{a b+1}{a+1}+\frac{b c+1}{b+1}+\frac{c d+1}{c+1}+\frac{d a+1}{d+1} \geq 4
$$

and determine all quadruples (a, b, c, d) for which equality holds.

Problem T-3

Find the smallest integer b with the following property: For each way of colouring exactly b squares of an 8×8 chessboard green, one can place 7 bishops on 7 green squares so that no two bishops attack each other.
Remark. Two bishops attack each other if they are on the same diagonal.

Problem T-4

Let $c \geq 4$ be an even integer. In some football league, each team has a home uniform and an away uniform. Every home uniform is coloured in two different colours, and every away uniform is coloured in one colour. A team's away uniform cannot be coloured in one of the colours from the home uniform. There are at most c distinct colours on all of the uniforms. If two teams have the same two colours on their home uniforms, then they have different colours on their away uniforms.
We say a pair of uniforms is clashing if some colour appears on both of them. Suppose that for every team X in the league, there is no team Y in the league such that the home uniform of X is clashing with both uniforms of Y. Determine the maximum possible number of teams in the league.

Time: 5 hours
Time for questions: 60 min
Each problem is worth 8 points.
The order of the problems does not depend on their difficulty.

Problem T-5

We are given a convex quadrilateral $A B C D$ whose angles are not right. Assume there are points P, Q, R, S on its sides $A B, B C, C D, D A$, respectively, such that $P S \| B D, S Q \perp B C$, $P R \perp C D$. Furthermore, assume that the lines $P R, S Q$, and $A C$ are concurrent. Prove that the points P, Q, R, S are concyclic.

Problem T-6

Let $A B C$ be an acute triangle with $A B<A C$. Let J be the center of the A-excircle of $A B C$. Let D be the projection of J on line $B C$. The internal bisectors of angles $B D J$ and $J D C$ intersect lines $B J$ and $J C$ at X and Y, respectively. Segments $X Y$ and $J D$ intersect at P. Let Q be the projection of A on line $B C$. Prove that the internal angle bisector of $Q A P$ is perpendicular to line $X Y$.
Remark. The A-excircle of the triangle $A B C$ is the circle outside the triangle which is tangent to the lines $A B, A C$, and the line segment $B C$.

Problem T-7

Find all positive integers n for which there exist positive integers $a>b$ satisfying

$$
n=\frac{4 a b}{a-b} .
$$

Problem T-8

Let A and B be positive integers. Consider a sequence of positive integers $\left(x_{n}\right)_{n \geq 1}$ such that

$$
x_{n+1}=A \cdot \operatorname{gcd}\left(x_{n}, x_{n-1}\right)+B \quad \text { for every } n \geq 2 .
$$

Prove that the sequence attains only finitely many different values.
Remark. We denote by $\operatorname{gcd}(a, b)$ the greatest common divisor of positive integers a and b.

