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I-1
Let R denote the set of all real numbers. For each pair (α, β) of nonnegative real numbers
subject to α + β ≥ 2, determine all functions f : R → R satisfying

f(x)f(y) ≤ f(xy) + αx + βy

for all real numbers x and y.

Solution. We know f(x)f(y) ≤ f(xy)+αx+βy and by exchanging x and y we get f(x)f(y) ≤
f(xy) + βx + αy. Combining the two we get

f(x)f(y) ≤ f(xy) + γx + γy, (1)

where γ = α+β
2 . Notice that γ ≥ 1.

Setting x = y = −1 in (1) we get f(−1)2 ≤ f(1) − 2γ, so f(1) ≥ 2γ. Setting x = y = 1 in
(1) we get f(1)2 ≤ f(1) + 2γ, so f(1)2 − f(1) ≤ 2γ. Since f(1) ≥ 2γ ≥ 2 and t2 − t is an
increasing function for t ≥ 2, we have (2γ)2 − 2γ ≤ f(1)2 − f(1) ≤ 2γ, hence 4γ2 ≤ 4γ, so
γ ≤ 1. Therefore, γ = 1.

We know that f(1) ≥ 2 and f(1)2 − f(1) ≤ 2, thus necessarily f(1) = 2. We also know
f(−1) ≤ f(1) − 2γ = 0, so f(−1) = 0.

Setting x = z, y = 1 in (1) we get 2f(z) ≤ f(z) + z + 1, so f(z) ≤ z + 1. Setting x = −z,
y = −1 in (1) we get 0 ≤ f(z) − z − 1, so f(z) ≥ z + 1. It follows that the only function which
can possibly satisfy the problem statement is

f(z) = z + 1. (2)

It remains to check for which α and β this is indeed a solution.

Substituting f into original inequality, we get (x + 1)(y + 1) ≤ (xy + 1) + αx + βy, thus
(1 − α)x + (1 − β)y ≤ 0. This holds for all x, y iff α = β = 1. Hence, for (α, β) = (1, 1) the
only solution is f(z) = z + 1 and for (α, β) ̸= (1, 1) there are no solutions.
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I-2
Find all integers n ≥ 3 for which it is possible to draw n chords of one circle such that their 2n

endpoints are pairwise distinct and each chord intersects precisely k other chords for:

(a) k = n − 2,

(b) k = n − 3.

Remark. A chord of a circle is a line segment whose both endpoints lie on the circle.

Answer. (a) All even n. (b) All n ≥ 3.

Solution. (a) Every chord avoids precisely one other chord, hence the avoiding chords form
pairs and n must be even. On the other hand, for any even n ≥ 2 the construction is simple
(see the left figure).

(b) For n = 3, 4, 5, 8 we can draw the chords as in the middle figure. From an admissible
drawing with n = 3, 4, 8, we can build an admissible drawing with n + 3k by adding k triples
of parallel lines within the gray strip: Each existing chord crosses all the newly added chords,
so it avoids precisely the 2 other chords it avoided before. Each newly added chord crosses all
other chords except the other two chords in its triple.

Another Solution to (b). Another way to look at the construction in part (2) is as follows:
Consider two “blocks” T and F of three and four chords, respectively, shown below in the left
figure.

Note that each chord misses exactly two other chords from its block, so any time we place
several blocks such that any two chords from different blocks cross, we obtain an admissible
drawing (see the middle figure). Since all integers n ≥ 3 except n = 5 can be expressed as a
sum of several 3’s and 4’s (by a casework mod 3, or by the Frobenius coin problem aka the
ChickenMcNugget theorem), it remains to find an admissible drawing for n = 5. For that, see
the right figure.
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I-3
Let ABC be a triangle with incenter I. The incircle ω of ABC is tangent to the line BC at
point D. Denote by E and F the points satisfying AI ∥ BE ∥ CF and ∠BEI = ∠CFI = 90◦.
Lines DE and DF intersect ω again at points E ′ and F ′, respectively. Prove that E ′F ′ ⊥
AI.

Solution 1. Our goal essentially is to prove that the circumcirle of DEF is tangent to the
incircle – that would immediately mean EF ∥ E ′F ′, which together with EF ⊥ AI gives the
desired result. In order to prove that we just need to show ∠BDE = ∠EFD.

A

B C

I

D

E

F

E′

F ′

Notice that quadrilaterals BDIE, DCFI are cyclic due to right angles BDI, BEI, IDC, IFC.
It it well-known that the circumcenter of BIC lies on AI (in fact, it is the second intersection
of AI with the circumcircle of ABC). This means that line EIF is tangent to the circumcircle
of BIC. With all these facts, we just need to perform simple angle chasing:

∠BDE = ∠BIE = ∠ICB = ∠ICD = ∠IFD = ∠EFD.

Solution 2. Denote by B′ and C ′ the projections of I on AC and AB, respectively. The right
angles gives us that C, F, B′, D lie on a circle. Angle chasing using AI ∥ CF then gives:

∠F ′IB′ = 2∠F ′DB′ = 2∠FDB′ = 2∠FCB′ = 2∠IAC = ∠BAC

Furthermore, we angle chase that:

∠FIB′ = 90◦ − ∠AIB′ = ∠IAC = ∠BAC

2
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So we get that:

∠F ′IF = ∠F ′IB′ − ∠FIB′ = ∠BAC − ∠BAC

2 = ∠BAC

2

Analogously, ∠E ′IE = ∠BAC
2 , so the line EIF is an external angle bisector in the triangle

E ′IF ′. Since AI ⊥ EF , the line AI is an internal angle bisector in the triangle E ′IF ′. But
triangle E ′IF ′ is isosceles, hence the line AI is also an altitude, so AI ⊥ E ′F ′.

8
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I-4
Let n and m be positive integers. We call a set S of positive integers (n, m)-good if it satisfies
the following three conditions:

(i) We have m ∈ S.

(ii) For all a ∈ S, all of the positive divisors of a are elements of S too.

(iii) For all mutually different numbers a, b ∈ S, we have an + bn ∈ S.

Determine all pairs (n, m) such that the set of all positive integers is the only (n, m)-good
set.

Answer. The set Z≥1 is the only (m, n)-good set if and only if n is odd and m ≥ 2.

Solution. For m = 1 we have that {1} is (m, n)-good. For the rest of the solution we assume
m ≥ 2.

• n is odd
Let S be (m, n)-good set. Since x+y | xn +yn, for x, y ∈ S with x ̸= y we have x+y ∈ S.
Since 1 | m, it implies 1 ∈ S and also m + 1 ∈ S. By induction, all positive integers
greater than m are in S. Moreover, every postive integer smaller than m has a multiple
which is greater than m. This implies that S = Z≥1.

• n is even
Let n = 2k and let p be a prime coprime to m such that p ≡ 3 mod 4. Such prime exists
since there are infinitely many primes with remainder 3 modulo 4 (this well-known fact
follows for example from Dirichlet’s theorem). Let S = {x ∈ Z≥1 : p ∤ x}. We will show
that S is (m, n)-good set. Clearly, the first two conditions are satisfied. Consider two
distinct elements x, y ∈ S such that

x2k ≡ −y2k mod p.

By exponentiating this congruence to the power of p−1
2 , we obtain

xk(p−1) ≡ (−1)
p−1

2 · yk(p−1) mod p,

form which it follows that
1 ≡ (−1)

p−1
2 mod p.

Since p ≡ 3 mod 4, (p − 1)/2 is an odd number, thus (−1) p−1
2 = −1 is a contradiction.

Therefore, S is (m, n)-good set.
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Comment. The end of the solution can be replaced by stating the well-known fact that for
p ≡ 3 (mod 4) we have p | x2 + y2 ⇒ p | x, y.
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T-1
Let Z denote the set of all integers and Z>0 denote the set of all positive integers.

(a) A function f : Z → Z is called Z-good if it satisfies f(a2 + b) = f(b2 + a) for all a, b ∈ Z.
Determine the largest possible number of distinct values that can occur among
f(1), f(2), . . . , f(2023), where f is a Z-good function.

(b) A function f : Z>0 → Z>0 is called Z>0-good if it satisfies f(a2 + b) = f(b2 + a) for all
a, b ∈ Z>0. Determine the largest possible number of distinct values that can occur among
f(1), f(2), . . . , f(2023), where f is a Z>0-good function.

Solution. The answer is (a) 2 and (b) 1077.

(a) Note that
f(a2 + b) = f(b2 + a) = f((−b)2 + a) = f(a2 − b).

In particular, by setting a ∈ {0, 1} we get f(b) = f(−b) and f(1 + b) = f(1 − b). This then
yields

f(2 + b) = f(1 + (1 + b)) = f(1 − (1 + b)) = f(−b) = f(b),

hence by induction the function must be constant on even integers and (separately) on odd
integers. On the other hand, a function f(n) = n (mod 2) satisfies the requirements and
attains 2 distinct values on {1, . . . , 2023}.

(b) Given two positive integers m < n, we say that m is a parent of n if there exist two positive
integers a, b such that a2 + b = m and b2 + a = n. Note that:

(a) If m = a2 + b and n = b2 + a (for positive integers a, b, m, n) then m < n if and only if
a < b: This follows from the fact that x2 − x is increasing on N.

(b) The numbers in S = {1, 2, 3, 4} do not have a parent: This is a simple check.

(c) For any n ≥ 2, the n − 1 numbers in An = {n2 + 1, . . . , n2 + (n − 1)} each have a unique
parent: Let 1 ≤ k ≤ n − 1 and assume that n2 + k = a2 + b with a > b > 0. Then either
n = a, k = b (in which case we obtain a parent k2 + n < n2 + k) or a < n, in which case
we get b ≥ n2 + k − (n − 1)2 ≥ 2n − 1 > a, a contradiction.

(d) For any n ≥ 2, the n + 2 numbers in Bn = {n2 + n, . . . , n2 + 2n + 1} do not have a
parent: Let n ≤ k ≤ 2n + 1 and assume that n2 + k = a2 + b with a > b > 0. Since
n2 + k < (n + 1)2 + 1, we must have a ≤ n but then b ≥ k ≥ n ≥ a, a contradiction.

Note that as n ∈ N varies, the sets An, Bn form a partition of N\S, hence each positive integer
has at most one parent. In other words, if we process the positive integers in increasing order,
for any currently processed integer n there will always be at most one parent, and thus at most
one requirement on which value to assign to f(n). Therefore, as we process the integers, to any

11
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integer n without a parent we can always safely assign any value f(n). (Clearly, when n has a
parent m, we must assign f(n) = f(m).) The answer is the number of integers n ∈ {1, . . . , 2023}
with no parent. Since 2023 = 442 + 87, this is

|S| +
Ç

43∑
i=2

(i + 2)
å

+ (87 − 44 + 1) = 1077.

Comment. It is possible to ask only for the answer to the part (b).

12
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T-2
Let a, b, c and d be positive real numbers with abcd = 1. Prove that

ab + 1
a + 1 + bc + 1

b + 1 + cd + 1
c + 1 + da + 1

d + 1 ≥ 4,

and determine all quadruples (a, b, c, d) for which equality holds.

Solution. By assumption we have

ab + 1
a + 1 + bc + 1

b + 1 + cd + 1
c + 1 + da + 1

d + 1 =
Å

ab + 1
a + 1 + cd + abcd

c + 1

ã
+
Å

bc + 1
b + 1 + da + abcd

d + 1

ã
=

= (ab + 1)
Å 1

a + 1 + cd

c + 1

ã
+ (bc + 1)

Å 1
b + 1 + ad

d + 1

ã
=

= (ab + 1)
Å 1

a + 1 + 1
abc + ab

ã
+ (bc + 1)

Å 1
b + 1 + 1

bcd + bc

ã
.

When estimating the parentheses by the inequality of the arithmetic-harmonic mean (i. e.
1/u + 1/v ≥ 4/(u + v) for positive real numbers u and v with equality iff u = v), we see that
the above expression is at least

(ab + 1) 4
a + 1 + abc + ab

+ (bc + 1) 4
b + 1 + bcd + bc

= 4(ab + 1)
a + 1 + abc + ab

+ 4(bc + 1) · a

(b + 1 + bcd + bc) · a
=

= 4(ab + 1)
a + 1 + abc + ab

+ 4(abc + a)
ab + a + 1 + abc

=

= 4(ab + 1 + abc + a)
1 + a + ab + abc

= 4.

Equality holds iff a + 1 = abc + ab and b + 1 = bcd + bc ⇔ ab + a = 1 + abc. Addition of
these equations yields 2a = 2abc, that is bc = 1. Plugging this into the first equation, we also
get 1 = ab. Therefore ab = bc = cd = 1, which implies a = c and b = d = 1/a. Indeed, these
conditions suffice, as is readily checked. Thus, equality holds iff (a, b, c, d) = (t, 1

t
, t, 1

t
) for some

positive real t.

13
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T-3
Find the smallest integer b with the following property: For each way of colouring exactly b

squares of an 8 × 8 chessboard green, one can place 7 bishops on 7 green squares so that no
two bishops attack each other.

Remark. Two bishops attack each other if they are on the same diagonal.

Answer. 41

Solution. Let us place 40 bishops on 6 diagonals as shown in Figure 2. If we select any 7 of
the placed bishops, by Pigeon hole principle, at least two of the selected bishops are on the
same diagonal, so they attack each other. Thus, the number b of selected bishops is at least
41.

Figure 1

Now, suppose for a contrary, that there is a placement of 41 bishops such there are not 7
non-attacking bishops. Divide all tiles to 8 groups as shown in Figure ??. It is easy to see that
any two bishops belonging to the same group do not attack each other. Therefore, each group
contains at most 6 bishops. Moreover, groups 7 and 8 contain at most 2 bishops due to their
size. Therefore, we have at most 6 · 6 + 2 · 2 = 40 bishops, which is a contradiction. Therefore,
from any placement of 41 bishops, it is possible to select some 7 of them such that no two
attack each other. This, together with the lower bound of b ≥ 41 finishes this solution.

Figure 2

14
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Comment (1). A weaker upper bound of 49 can be shown as follows: Consider a placement of
49. bishops. We have 8 rows and 49/8 > 6, so by Pigeon hole principle, there is a row with at
least 7 bishops. Clearly, bishops in the same row do not attack each other.

Comment (2). This problem can be generalised for larger dimensions of the chessboard and
also larger number of sought non-attacking bishops.
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T-4
Let c ≥ 4 be an even integer. In some football league, each team has a home uniform and
an away uniform. Every home uniform is coloured in two different colours, and every away
uniform is coloured in one colour. A team’s away uniform cannot be coloured in one of the
colours from the home uniform. There are at most c distinct colours on all of the uniforms. If
two teams have the same two colours on their home uniforms, then they have different colours
on their away uniforms.

We say a pair of uniforms is clashing if some colour appears on both of them. Suppose that for
every team X in the league, there is no team Y in the league such that the home uniform of
X is clashing with both uniforms of Y . Determine the maximum possible number of teams in
the league.

Answer. We claim the answer is n3

8 − n2

4 .

Solution. We first give an example of a league with n3

8 − n2

4 teams.

Split the colours in two sets of size n/2. Let m = n/2 and let c1, . . . , cm and d1, . . . , dm be the
colours in those sets.

Consider all pairs of kits of the form ({ci, cj}, dk) or ({di, dj}, ck), where i < j and 1 ≤ i, j, k ≤
m. There are 2 ·

(
m
2
)

·m = m3 −m2 = n3

8 − n2

4 such pairs of kits. We claim that this construction
is valid.

Consider any pair of kits ({ci, cj}, dk). Then for any other team of the form ({ca, cb}, du),
the kit du is not clashing with the home kit {ci, cj}. Furthermore, for any team of the form
({da, db}, cu) the kit {da, db} is not clashing with the home kit {ci, cj}. Thus, the construction
is valid.

We now prove that there is no larger league. Consider any colour c. Take any other colour d.
If there is a team whose home kit is {c, d}, then there is no team whose home kit contains c

and whose away kit is d. Conversely, if there is a team whose home kit contains c and whose
away kit is d, then there is no team whose home kit is {c, d}.

Let A(c) be the number of colours d such that there is a home kit of the form {c, d}, and let
B(c) the number of colours d such that there is a team whose home kit contains c and whose
away kit is d.

From the observation we made, A(c) + B(c) ≤ n − 1. The number of teams whose home kit
contains the colour c is at most

A(c)B(c) ≤ n − 2
2 · n − 1

2 = n2

4 − n

2 ,

16
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where the inequality follows from the fact that the function x 7→ x(n − 1 − x) is increasing on
(0, (n − 1)/2) and decreasing on ((n − 1)/2, n − 1).

Summing up over all colours c and dividing by 2 since we counted each home kit twice, we
obtain that the number of teams is at most

1
2

∑
c

A(c)B(c) ≤ n

2 ·
Å

n2

4 − n

2

ã
= n3

8 − n2

4 .

17
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T-5
We are given a convex quadrilateral ABCD whose angles are not right. Assume there are
points P , Q, R, S on its sides AB, BC, CD, DA, respectively, such that PS ∥ BD, SQ ⊥ BC,
PR ⊥ CD. Furthermore, assume that the lines PR, SQ, and AC are concurrent. Prove that
the points P , Q, R, S are concyclic.

Solution. Let the interesection point of PR, QS, AC be T and let H be the orthocenter
of BCD. Since ∠BCD is not right, H ̸= C. Notice that triangles HBD and TPS are
homothetic due to their corresponding sides being parallel. This means that HT, BP, DS are
concurrent. Since H ̸= C, this gives that H lies on line ATC.

Due to parallel lines, we have ∠RPS = ∠TPS = ∠HBD. Since H is the orthocenter, we
have ∠HBD = ∠DCH = ∠RCT . Finally, note that quadrilateral QTRC is cyclic due to right
angles at Q and R, which gives ∠RCT = ∠RQT = ∠RQS. Together, we have ∠RPS = ∠RQS,
which finishes the proof.

A

B D

P S

R

Q

C

H

T
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T-6
Let ABC be an acute triangle with AB < AC. Let J be the center of the A-excircle of ABC.
Let D be the projection of J on line BC. The internal bisectors of angles BDJ and JDC

intersect lines BJ and JC at X and Y , respectively. Segments XY and JD intersect at P .
Let Q be the projection of A on line BC. Prove that the internal angle bisector of QAP is
perpendicular to line XY .

Remark. The A-excircle of the triangle ABC is the circle outside the triangle which is tangent
to the lines AB, AC, and the line segment BC.

Solution. Let E and F be the points symmetric to D with respect to lines JC and BJ ,
respectively. Then D, E and F are the points of tangency of the A-excircle of ABC with BC,
CA and AB, respectively. In particular, AE = AF .

Let Z be the point on ray DP → such that DZ = AE. Note that CE = CD and ∠CEY =
∠Y DC = ∠ZDY . It follows by SAS that △AEY ≡ △ZDY . Therefore AY = Y Z.

Similarly, DZ = AF , FX = DX, and ∠XFA = ∠BDX = ∠XDZ. Thus by SAS △XFA ≡
△XDZ. Hence AX = XZ.

Since AX = XZ and AY = Y Z, it follows that XY is the perpendicular bisector of AZ. In
particular, AP = PZ. Hence ∠ZAP = ∠PZA = ∠QAZ, where the latter equality holds true
as AQ ∥ DZ. This shows that AZ is the internal angle bisector of ∠QAP and we are done
because XY ⊥ AZ.

19
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T-7
Find all positive integers n for which there exist positive integers a > b satisfying

n = 4ab

a − b
.

Answer. Any composite n ̸= 4.

Solution. We say that n is good if there exist such positive integers a and b (and bad other-
wise).

First, we show that n = 4 is bad. Suppose otherwise. Then there exist positive integers a, b

such that
4 = 4ab

a − b
.

But this rewrites as (a + 1)(b − 1) = −1 and the left-hand side is non-negative for any two
positive integers a, b, a contradiction.

Now consider n ≥ 6. We make three observations.

First, note that if n is good then any its multiple n′ = k · n is also good – it suffices to take
a′ = k · a and b′ = k · b. In particular, for a = 2, b = 1 we have 4ab/(a − b) = 8, hence all
multiples of 8 are good.

Second, take any positive integer t of the form t = 4k + 1. By setting a = t, b = 1 we get

4ab

a − b
= 4 · t

4k
= t

k
,

hence by setting a = t · k, b = k we obtain that any multiple of any number of the form
t = 4k + 1 is good.

Third, likewise, take any positive integer t of the form t = 4k − 1. By setting a = t, b = 1 we
get

4ab

a − b
= 4 · t

4k − 2 = 2t

2k − 1 ,

hence every multiple of double of any number of the form t = 4k − 1 is good.

Now we combine the observations. Consider any composite number n ≥ 6. If the prime
factorization of n contains a prime of the form 4k+1 then n is good (by the second observation).
Similarly, if n contains at least two (not necessarily distinct) primes of the form 4k − 1 then
their product is of the form 4k+1, and thus n is good (by the second observation). If n contains
a prime of the form 4k − 1 and it is even, then n is also good (by the third observation). Thus,
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it remains to consider the powers of 2. But we know that all multiples of 8 are good (by the
first observation) and 4 is bad, so we are done.

22
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T-8
Let A and B be positive integers. Consider a sequence of positive integers (xn)n≥1 such that

xn+1 = A · gcd(xn, xn−1) + B for every n ≥ 2.

Prove that the sequence attains only finitely many different values.

Remark. We denote by gcd(a, b) the greatest common divisor of positive integers a and b.

Solution. Let n ≥ 2 be a positive integer such that xn+1 > xn. Then

xn

gcd(xn, xn−1)
<

xn+1

gcd(xn, xn−1)
= A + B

gcd(xn, xn−1)
≤ A + B.

Furthermore,

gcd(xn, xn+1) = gcd(xn, A gcd(xn, xn−1) + B)

≤ gcd(gcd(xn, xn−1), A gcd(xn, xn−1) + B) · gcd
Å

xn

gcd(xn, xn−1)
, A gcd(xn, xn−1) + B

ã
= gcd(gcd(xn, xn−1), B) · gcd

Å
xn

gcd(xn, xn−1)
, A gcd(xn, xn−1) + B

ã
,

where we first used the fact that gcd(ab, c) ≤ gcd(a, c) gcd(b, c), and then used the Euclidean
algorithm on the left factor of the right hand side.

Now we’ll bound each of the factors by constants. The left factor is not greater than B, and the
right factor is not greater than xn

gcd(xn,xn−1) , which is less than or equal to A + B. We conclude
that

gcd(xn+1, xn) ≤ B(A + B),

which implies xn+2 ≤ AB(A + B) + B.

We say an element of the sequence is big if it is greater than AB(A + B) + B, and small
otherwise. The sequence is either eventually decreasing, or it contains a small element, since
xn+2 is small whenever xn+1 > xn.

We’ve proven that whenever xj is small, either xj+1 ≤ xj and hence xj+1 is also small, or xj+2 is
small. This means that from some point in the sequence onwards there are no two consecutive
big elements, but then all but finitely many elements of the sequence are not greater than
A(AB(A + B) + B) + B, because either they’re small or the previous element of the sequence
is small.

Since we bounded all but finitely many elements of the sequence, the claim is proven.
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