Problem I-1

Let \mathbb{R} denote the set of all real numbers. For each pair (α, β) of nonnegative real numbers subject to $\alpha+\beta \geq 2$, determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x) f(y) \leq f(x y)+\alpha x+\beta y
$$

for all real numbers x and y.

Problem I-2

Find all integers $n \geq 3$ for which it is possible to draw n chords of one circle such that their $2 n$ endpoints are pairwise distinct and each chord intersects precisely k other chords for:
(a) $k=n-2$,
(b) $k=n-3$.

Remark. A chord of a circle is a line segment whose both endpoints lie on the circle.

Problem I-3

Let $A B C$ be a triangle with incenter I. The incircle ω of $A B C$ is tangent to the line $B C$ at point D. Denote by E and F the points satisfying $A I\|B E\| C F$ and $\angle B E I=\angle C F I=90^{\circ}$. Lines $D E$ and $D F$ intersect ω again at points E^{\prime} and F^{\prime}, respectively. Prove that $E^{\prime} F^{\prime} \perp A I$.

Problem I-4

Let n and m be positive integers. We call a set S of positive integers (n, m)-good if it satisfies the following three conditions:
(i) We have $m \in S$.
(ii) For all $a \in S$, all of the positive divisors of a are elements of S too.
(iii) For all mutually different numbers $a, b \in S$, we have $a^{n}+b^{n} \in S$.

Determine all pairs (n, m) such that the set of all positive integers is the only (n, m)-good set.

