

Problem I–1

Let \mathbb{R} denote the set of all real numbers. For each pair (α, β) of nonnegative real numbers subject to $\alpha + \beta \geq 2$, determine all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$f(x)f(y) \le f(xy) + \alpha x + \beta y$$

for all real numbers x and y.

Problem I–2

Find all integers $n \ge 3$ for which it is possible to draw n chords of one circle such that their 2n endpoints are pairwise distinct and each chord intersects precisely k other chords for:

- (a) k = n 2,
- (b) k = n 3.

Remark. A chord of a circle is a line segment whose both endpoints lie on the circle.

Problem I–3

Let ABC be a triangle with incenter I. The incircle ω of ABC is tangent to the line BC at point D. Denote by E and F the points satisfying $AI \parallel BE \parallel CF$ and $\angle BEI = \angle CFI = 90^{\circ}$. Lines DE and DF intersect ω again at points E' and F', respectively. Prove that $E'F' \perp AI$.

Problem I–4

Let n and m be positive integers. We call a set S of positive integers (n,m)-good if it satisfies the following three conditions:

- (i) We have $m \in S$.
- (ii) For all $a \in S$, all of the positive divisors of a are elements of S too.
- (iii) For all mutually different numbers $a, b \in S$, we have $a^n + b^n \in S$.

Determine all pairs (n, m) such that the set of all positive integers is the only (n, m)-good set.